
UMKGm TP: User Friendly Multi Group Key Transfer Protocol with
Circulant Matrices

Shruti Nathani1, B.P. Tripathi2, S.K. Bhatt3
1,2,3Dept. of Mathematics, Govt. N.P.G. College of Science, Raipur (C.G.) India.

ABSTRACT
Most existing traditional group key distribution protocols are largely designed for a single group. They establish a
single key for a single group. Many group oriented applications require multi-group key establishments at time. In
which user may join multiple groups simultaneously. Recently, in 2018, C.F. Hsu et al. gave new type of user
oriented multi-group key establishments using secret sharing (UMKESS). As many other group Key establishments
schemes this protocol (UMKESS) is also polynomial based in which to distribute and recover the secret group key,
the key generation centre(KGC) and each group member has to solve 푡-degree interpolating polynomial. Inspire
from Hsu et al.’s UMKESS, in this paper, we present a new design of user friendly group key distribution protocol
using secret sharing with circulant matrices. Because of using circulant matrices as a tool, our proposed protocol
푈푀퐾 푇푃 is become more efficient, secure and robust. Also, all the required security features of group
communications are handle in 푈푀퐾 푇푃.

Key words: multi-group key establishment, secret sharing scheme, circulant matrices, key transfer protocol.

I INTRODUCTION

The traditional one to one communication has been
expanded into one-to-many and many-to-many
communication. This type of communications
involving multiple users(n ≥ 2) are called group
communication [11]. For a secure group
communication a group key is needed to be shared
among all the group members. That is, before
exchanging communication messages a key
establishment protocol must be used to construct the
session keys for legitimate participants in the
communication [19]. This session a key is then uses
by the group users to communicate their secrets, to
encrypt and decrypt sensitive information and to
authenticate messages in the group.
The group key establishment protocols are often
classified into two types:[2]
(a) Centralized, also called distributive group key

establishment protocols, where a server is
responsible for generate a group key and
distribute the group key to all the group
members. This type of protocols is also called
GKT/GKD protocol.

(b) Distributed, also called, contributory group key
establishment, in which there is no server, is
required and group key is generated by the
contribution of all the group members. This type
is also known as group key agreement (GKA)
protocol.

In the past few years a large amount of research work
on group key transfer protocol has been published in
the literatures. The most widely used group key
transfer protocols are based on secret sharing
scheme(SSS), which was first introduced by both
Blakley[7] and Shamir[1], independently in 1979.
Then the first group key transfer protocol using secret
sharing scheme (SSS) is proposed in 1989 by Laih et
al.[5]. Later, there are several other group key
transfer protocols [8,9,10] following the same
concept of using SSS was proposed.

In 2010, Harn et al.[10] proposed, a first
authenticated GKT protocol based on SSS. The
confidentiality and authentication of this novel GKT
protocol is information theoretically secure. But, in
this protocol, to distribute and recover the secret
group key, KGC and each group member has to
compute a t-degree interpolating polynomial. At the
same time, many research articles [11,12,13,16,17]
based on Harn et al.’s[10] authenticated protocol
using SSS with the computation of a t-degree
interpolating polynomial has been proposed.

To overcome, this drawback, in 2016, Hsu et al. [2]
gave an efficient GKT protocol. In their scheme the
information related to group keys was hidden by
vandermonde matrix and to distribute the group key
efficiently they employed linear secret sharing
scheme on vandermonde matrix, which reduces the
computation load of each group member.

Recently in 2018, S. Nathani et al.[14] also gave an
authenticated and secure GKT protocol based on
secret sharing scheme with circulant matrices. But all
this above cited conventional GKT protocols can
establish a single group key at a time, that is,
establish a single group key for a single group.

With the rapid development of group oriented
services such as business conferencing system,
wireless body area network, programmable routey
communications and file sharing tools etc, require
more and more multi-group communications in
which users may join multiple groups
simultaneously.

Recently, a new type of user oriented multi-group
key establishments using secret sharing (UMKESS)
is proposed by C.F. Hsu et al.[3] in 2018. This multi-
group key establishment scheme is also polynomial
based. That means, again to distribute and recover the
secret group key, KGC and each group member has
to solve t degree interpolating polynomial.

Therefore, inspire from C.F. Hsu et al.’s [3],
UMKESS protocol, we extend our conventional GKT
protocol [14] into multi-group key transfer protocol
on SSS with circulant matrices. In this paper, we
propose a new design of user friendly multi-group
key distribution protocol using SS with circulant
matrices.
Some unique features of our protocol are summarized
below:

 A circulant matrices based key distribution
protocol for multi-group communications
is proposed.

 We use circulant matrix as a tool and
present an efficient computation of group
keys. Since information related to group
keys is a hidden using circulant matrix.
Thus, each participating group member
and KGC has to calculate only first row of
the matrix. This gives us much less
computational complexity.

 Each user keeps only one share with KGC
at the time of registration and the share
can be used to recover multiple group
keys.

 In the whole proposed scheme, the group
key is authenticated by each user of
distinct groups and KGC. Also,
authentication has been done by only one
message in each group.

 The KGC can manage user joining or
leaving dynamically. There has no
rekeying overhead.

 All the required security features are
handling in our proposed multi-group key
transfer protocol.

II PRELIMINARIES

(a) Secret Sharing: In a secret sharing scheme, a
secret S is divided into n shares and shared
among a set of n shareholders by a mutually
trusted dealer in such a way that authorized
subset of shareholders can reconstruct the secret
but unauthorized subset of share holders cannot
determine the secret. If any unauthorized subset
of shareholders cannot obtain any information
about the secret, then the scheme is called
perfect.[2]

(b) Circulant Matrix:[4]A Circulant matrix is a
square matrix where, given the first row, the
successive rows are obtained by cyclically right
shifting the present row by one element. Thus
the i row of a circulant matrix of size (n × n) is
obtained by cyclically right shifting the		(i −
1)) row by one position, for i = 2	to	n , given
the first row. Let the first row be the row vector
,[c(1), c(2), … . . , c(n− 1), c(n)]. Then the
circulant matrix C is obtained as

C =

)1()3()2(

)1()1()(
)()2()1(

ccc

nccnc
nccc

The most important property of circulant matrices is they are multiplicatively commutative.

(c) SSS based on Circulant matrix for multi-

group communications: Suppose a group of
n	participants {U , U , U ,⋯ , U } want to
communicate in a secure multi-group
communication with their long term secrets
{x , x , … . . x } shared with only KGC. Also for
multi-groups communication we have to take a
batch of group {G , G , … . , G 	} and a mutually

trusted KGC. Actually this scheme consists of
two algorithms [14].

(d) Secret generation algorithm: To form Circulant
matrix for each user U (1 ≤ i ≤ n) in each
particular group G (1 ≤ i ≤ m) KGC first picks
the shared secret x of each user U 	and make
circulant matrix [C] as below :

[C] =

)1()3()2(

)1()1()(
)()2()1(

ccc

nccnc
nccc

= Circ(x , x , … … … . . , x)
 where 1 ≤ j ≤ n
and m denotes the number of group users in each particular group G and then calculate the secrets of S of each user
U (1 ≤ j ≤ n) by computing
 S = [C] ∗ Circ(r , r , … … , r)
 for 1 ≤ j ≤ n, 1 ≤ i ≤ m

Thus, this algorithm outputs with a list of secret shares S (1 ≤ j ≤ n, 1 ≤ i ≤ m).

(e) Secret Reconstruction Algorithm: This algorithm takes all the shares 푆 (1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚) each

participating member 푈 has long term private key 푥
and public vector → = (푟 , 푟 , … … , 푟) as inputs and outputs the secret

 		푆 = 푠 + 푠 +⋯+ 푠
by computing each product

푺풋풊 = 푪풊풓풄 풙풋ퟏ,풙풋ퟐ, … … ,풙풋풎 .푪풊풓풄(풓ퟏ풊,풓ퟐ풊, … ,풓풋풊)
(풇풐풓	ퟏ ≤ 풋 ≤ 풏,ퟏ ≤ 풊 ≤ 풎).

III PROPOSED PROTOCOL

We suppose that there are 푛 users {푈 ,푈 , … … ,푈 }
participated in multi-group communications. Each
user is required to register itself at KGC and KGC
keeps tracking all the registered group member which
includes removing any unsubscribed group
participants or adding new member. To achieve
secure multi-group communications, KGC has to
selects multi-group session keys for all the running
groups simultaneously and securely distributes these
keys to all the valid registered members of particular
groups. Therefore, the only valid members who
belong to that particular group can easily derive this
group’s session key.

The proposed group key transfer protocol for multi-
group communications consist of three phases:
Initialization, user registration, multi group key
distribution and establishment. Here we assume that
there are 푛 users {푈 ,푈 , … … ,푈 } participated in
multi-group communications denoted by
{퐺 ,퐺 , … … ,퐺 }.
(a) Initialization: The KGC selects a safe large

prime 푝, and a secure one way hash function
ℎ(.) whose domain is GF(p). The KGC
publishes 푝 and ℎ(.).

(b) User Registration: Each user is required to
register at the KGC for subscribing the key
distribution service. The KGC keeps tracking all
the registered users or adding new users. During
the registration each user 푈 (1 ≤ 푗 ≤ 푛) shares
his/her long term secret 푥 ∈ 퐾, (1 ≤ 푗 ≤ 푛)
with KGC in a secure manner.

(c) Multi-group key generation, distribution and
establishment: Suppose a group of 푛 members
{푈 ,푈 , … … ,푈 } want to communicate in a
secure multi-group communication with their
long term secrets {푥 ,푥 , … … ,푥 } shared with
only trusted party KGC secretly. Here we also
assume a batch of groups {퐺 ,퐺 , … … ,퐺 }
which are handle by KGC simultaneously. The
process of multigroup key generation,
distribution and establishment contain five steps:

(i) Step 1: The initiator sends a key generation
request to KGC for multiple groups with a
list of groups {퐺 ,퐺 , … … ,퐺 } and each
group is represented as
퐺 = 푈 ,푈 , … … ,푈 , 1 ≤ 푖 ≤
푚	푤ℎ푒푟푒	푗 ∈ {1,2,⋯ ,푛}.

(ii) Step 2: KGC finally broadcast the list of all
groups {퐺 ,퐺 , … … ,퐺 }	to all members as a
response.

(iii) Step 3: For each group member 푈 , 1 ≤ 푗 ≤
푛, he/she decides to join more than one
groups 퐺 (1 ≤ 푖 ≤ 푚) simultaneously. Then
each group user sends their random value
푟 , (for 1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚) for each
group 퐺 in which they want to join.

(iv) Step 4: Now KGC received all the random
values send by all the group participants
푈 , (1 ≤ 푗 ≤ 푛). Then KGC broadcast the
actual list of participants of each particular
group according their random values sent by
each group user. This list of number of
participants in each particular group helps
the group participants to make circulant
matrices.

(v) Step 5: Now KGC randomly selects the
group keys 퐾 (1 ≤ 푖 ≤ 푚) for all the
groups 퐺 (1 ≤ 푖 ≤ 푚). Then KGC compute
the secrets 푆 (1 ≤ 푗 ≤ 푚) of each user 푈 in
each particular group 퐺 (1 ≤ 푖 ≤ 푚) by
computing the product

[Circulant matrices of shared secrets of each user
푼풋 in the group 푮풊]* [Circulant matrix of random
values 풓풋풊	of each user 푼풋 in the group 푮풊] =풔풋풊.
(1 ≤ 푖 ≤ 푚, 1 ≤ 푗 ≤ 푛)
[퐶] *퐶푖푟푐 푟 , 푟 , … . . , 푟 = 푠
Here, m denotes the number of members in the group
퐺 . After this computation of secret of each user 푈 in
particular groups, KGC also computes some
additional values 푢 = 푆 − 푠 	,	where
푆 = 퐶푖푟푐 퐾 ,퐾 , … … ,퐾 , 	,
for 1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚 and

퐴푢푡ℎ 	 			= ℎ(퐾 ,푈 ,푈 , … . ,푈 , 푟 , 푟 , … , 푟 , 푢 ,푢 , … . ,푢)
for , 1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚.
At last, finally KGC broadcast (퐴푢푡ℎ	 	, 푢 for 1 ≤ 푖 ≤ 푚, 1 ≤ 푗 ≤ 푛.
 Here, 푖	represents number of groups and 푗 represents number of participants in each group 퐺 .

(vi) Step: 6 Now each participating group member 푈 , 1 ≤ 푗 ≤ 푛, knowing their corresponding public value
푢 ,	in each particular group 퐺 , (1 ≤ 푖 ≤ 푚),	is able to compute the product

퐶 ∗ 퐶푖푟푐 푟 , 푟 , … … , 푟 = 푠

and recover the group key 퐾 by computing,
푆 = (푢 + 푠)

Which is of the form
푆 = 퐶푖푟푐(퐾 ,퐾 , …퐾)

(for , 1 ≤ 푗 ≤ 푛 , 1 ≤ 푖 ≤ 푚)
Afterwards, each 푢 , (푓표푟	1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚) authenticates their corresponding groups 퐺 by computing
퐴푢푡ℎ	

∗ 		= 															ℎ(퐾 ,푈 ,푈 , … . ,푈 , 푟 , 푟 , … , 푟 ,푢 , 푢 , …푢)
for 1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚
and then checks this value by

퐴푢푡ℎ = 퐴푢푡ℎ∗.
If this result is correct then each participant 푈 (1 ≤ 푗 ≤ 푛),	 in the group 퐺 (1 ≤ 푖 ≤ 푚) authenticates the group key
퐾 	is sent from KGC.

IV AN EXAMPLE

In our example we assume a group of 7 members
{푈 ,푈 ,푈 ,푈 ,푈 ,푈 ,푈 } want to generate a secure
group communications in multiple groups
simultaneously.
(a) User Registration: During registration each user

푈 , 1 ≤ 푗 ≤ 7, shares his/her long term secrets
푥 ∈ 퐾 with KGC. Suppose 	푈 	Shares 푥 =
2, 	푈 	Shares 푥 = 1, 	푈 	Shares 푥 =
4, 	푈 	Shares 푥 = 3, 	푈 								Shares 푥 =
10, 	푈 					Shares 푥 = 5, 	푈 		Shares 푥 = 7	in a
secure manner. KGC publishes ℎ(∙) .

(b) Group Key Generation and Distribution:
In our example we assume a batch of
groups{퐺 ,퐺 ,퐺 }	, in which there 7 group members
want to join simultaneously.

Step 1: Suppose 푈 (푖푛푖푡푖푎푡표푟) sends a key
generation request to KGC with a list of groups
{퐺 ,퐺 ,퐺 }.
Step 2: KGC broadcast the list of groups {퐺 ,퐺 ,퐺 }
to all members as a response.
Step 3: Here each group member 푈 , (1 ≤ 푗 ≤ 7),
he/she decides to join more than one groups 퐺 , (1 ≤
푖 ≤ 3). Then each group participants sends their
radom values 푟 ,	for each group 퐺 in which they
want to join.
 Suppose ,푈 sends 푟 = 2, 푟 = 1 , 푈 sends
푟 = 1, 		푟 = 8 , 푈 sends 푟 = 2, 	푈 sends
푟 = 10, 푟 = 3, 푈 sends 푟 = 11, 		푟 = 6	, 푈
sends 푟 = 4, 푟 = 2	, 		푈 sends 	푟 = 9			to
KGC.

Step 4: Now KGC received all the random keys send
by the 7 users {푈 ,푈 ,푈 ,푈 ,푈 ,푈 ,푈 }.
Then, KGC broadcast the actual list of participants
푈 (1 ≤ 푗 ≤ 7) of each particular group 퐺 (1 ≤ 푖 ≤
5). That means KGC broadcast

({푈 ,푈 ,푈 ,푈 ,푈 , } ∈ 퐺 ,
{푈 ,푈 ,푈 } 	 ∈ 퐺 ,			{푈 ,푈 ,푈 } ∈ 퐺) list of all group members publicly.
Step 5: Now KGC randomly selects the 3 group keys 퐾 = 100, 퐾 = 200, 퐾 = 50		,	to all the 3 groups
{퐺 ,퐺 ,퐺 }.
Now KGC compute the secrets 푠 of each user 푈 	of each particular groups 퐺 (1 ≤ 푗 ≤ 7, 1 ≤ 푖 ≤ 3).
For this KGC, first has to make the circulant matrices of each participating group user 푈 (1 ≤ 푗 ≤ 7) in each
particular group 퐺 (1 ≤ 푖 ≤ 3), with the help of their corresponding shared secret values.

푥 = 2, 푥 = 1, 푥 = 4,푥 = 3,푥 = 10, 푥 = 5, 푥 = 7
That means, for 퐺 , {푈 ,푈 ,푈 ,푈 ,푈 , },

퐶 = 퐶푖푟푐(2 , 2 , 2 , 2 , 2) = 퐶푖푟푐(2,4,8,16,32)
 퐶 = 퐶푖푟푐(1 , 1 , 1 , 1 , 1) = 퐶푖푟푐(1,1,1,1,1)

퐶 = 퐶푖푟푐(3 , 3 , 3 , 3 , 3) = 퐶푖푟푐(3,9,27,81,243)		
퐶 = 퐶푖푟푐(10 , 10 , 10 , 10 , 10) = 퐶푖푟푐(10,100,1000,10000,100000)

퐶 = 퐶푖푟푐(5 , 5 , 5 , 5 , 5) = 퐶푖푟푐(5,25,125,625,3125)
Then, 푠 = 							 [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)

= 퐶푖푟푐(2,4,8,16,32) ∗ 퐶푖푟푐(2,1,10,11,4)
= 퐶푖푟푐(300,538,446,230,212).

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)
= 퐶푖푟푐(1,1,1,1,1) ∗ 		퐶푖푟푐(2,1,10,11,4)

= 퐶푖푟푐(28,28,28,28,28).
푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)

= 퐶푖푟푐(3,9,27,81,243) ∗ 퐶푖푟푐(2,1,10,11,4)
= 퐶푖푟푐(1392,3450,3090,1284,948).

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)
= 퐶푖푟푐(10,100,1000,10000,100000) 							∗ 퐶푖푟푐(2,1,10,11,4)

= 퐶푖푟푐(211420,1114210,1142200,

422110,221140)
푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)

= 퐶푖푟푐(5,25,125,625,3725) 							 ∗ 퐶푖푟푐(2,1,10,11,4)
= 퐶푖푟푐(11460,44680,43800,

16580,9620)

For group G , {푈 ,푈 ,푈 },

퐶 = 퐶푖푟푐(1 , 1 , 1) = 퐶푖푟푐(1,1,1).

																퐶 = 퐶푖푟푐(4 , 4 , 4) = 																																																													퐶푖푟푐(4,16,64).
															퐶 = 퐶푖푟푐(10 , 10 , 10) = 																																																				퐶푖푟푐(10,100,1000).
Then,

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(1,1,1) ∗ 퐶푖푟푐(8,7,6)

= 퐶푖푟푐(21,21,21).
푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(4,16,64) ∗ 퐶푖푟푐(8,7,6)

= 퐶푖푟푐(576,540,648).
푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)

= 퐶푖푟푐(10,100,1000) ∗ 퐶푖푟푐(8,7,6)
= 퐶푖푟푐(7680,6870,8760).

For group 퐺 , {푈 ,푈 ,푈 },

퐶 = 퐶푖푟푐(2 , 2 , 2) = 퐶푖푟푐(2,4,8).

퐶 = 퐶푖푟푐(3 , 3 , 3) = 																																							퐶푖푟푐(3,9,27).
퐶 = 퐶푖푟푐(7 , 7 , 7) = 																														퐶푖푟푐(7,49,343).
Then,

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟c(2,4,8) ∗ 퐶푖푟푐(1,3,9)

= 퐶푖푟푐(62,82,38).

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(3,9,27) ∗ 퐶푖푟푐(1,3,9)

									= 퐶푖푟푐(165,261,81).
푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)

= 퐶푖푟푐(7,49,343) ∗ 퐶푖푟푐(1,3,9)
푠 = 퐶푖푟푐(1477,3157,553).

Now, KGC computes the five additional values for group 퐺 ,

푢 = 푆 − 푠
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100) 		− 퐶푖푟푐(300,538,446,230,212).

= 퐶푖푟푐(−200,9462,999554,99999770,
9999999788).

푢 = 푆 − 푠
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100) 		− 퐶푖푟푐(28,28,28,28,28).

= 퐶푖푟푐(72,9972,999972,99999972,	
9999999972).

푢 = 푆 − 푠
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100) 		− 퐶푖푟푐(1392,3450,3090,1284,948).

= 퐶푖푟푐(−1292,6550,996910,99998716
, 9999999052).

푢 = 푆 − 푠
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100) 		− 퐶푖푟푐 211420, 1114210,1142200,

422110, 221140 .

= 퐶푖푟푐(−211320,−1104210,−142200,
99577890,9999778890).

푢 = 푆 − 푠
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100) 		− 퐶푖푟푐(11460,44680,43800,16580,9620).

= 퐶푖푟푐(−11360,−34680,956200,99983420,
9999990380).
and the value of
퐴푢푡ℎ = ℎ(퐾 = 100, {푈 ,푈 ,푈 ,푈 ,푈 }, 푟 , 푟 , 푟 , 푟 , 	푟 ,푢 ,푢 ,푢 ,푢 ,푢) .

KGC computes three additional values for group 퐺 ,

푢 = 푆 − 푠
푢 = 퐶푖푟푐(200 , 200 , 200) 		− 퐶푖푟푐(21,21,21)

= 퐶푖푟푐(179,39979,7999979).

푢 = 푆 − 푠
푢 = 퐶푖푟푐(200 , 200 , 200) 		− 퐶푖푟푐(576,540,648)

= 퐶푖푟푐(−376,39460,7999352).

푢 = 푆 − 푠
푢 = 퐶푖푟푐(200 , 200 , 200) 							− 퐶푖푟푐(7680,6870,8760)

= 퐶푖푟푐(−7480,33130,7991240).
and the value of
퐴u푡ℎ = ℎ 퐾 = 200, {푈 ,푈 ,푈 }, 푟 , 푟 , 푟 ,푢 ,푢 ,푢 .

Also, KGC has to compute 3 additional values for group 퐺 ∈ {푈 ,푈 ,푈 }.

푢 = 푆 − 푠
푢 = 퐶푖푟푐(50 , 50 , 50) 		− 퐶푖푟푐(62,82,38)

= 퐶푖푟푐(−12,2418,124962).
푢 = 푆 − 푠

푢 = 퐶푖푟푐(50 , 50 , 50) 		− 퐶푖푟푐(165,261,81)
= 퐶푖푟푐(−115,2239,124919).

푢 = 푆 − 푠
푢 = 퐶푖푟푐(50 , 50 , 50) 		− 퐶푖푟푐(1477,3157,553)

= 퐶푖푟푐(−1427,−657,124447).
and the value of

퐴푢푡ℎ = ℎ 퐾 = 50, {푈 ,푈 ,푈 }, 푟 , 푟 , 푟 , 푢 ,푢 ,푢 .
Thus, KGC finally broadcast,

{퐴푢푡ℎ ,퐴푢푡ℎ ,퐴푢푡ℎ , 푢 ,푢 ,푢 ,푢 ,푢 ,
푢 ,푢 ,푢 , , {푢 ,푢 ,푢 } }.

Step 6: At last to compute the common group key, each participating group members of group,

퐺 ∈ {푈 ,푈 ,푈 ,푈 ,푈 }, 퐺 ∈ {푈 ,푈 ,푈 },
, 퐺 ∈ {푈 ,푈 ,푈 },

has to solve the equation
푆 = (푢 + 푠)

where, 푆 = 퐶푖푟푐(퐾 ,퐾 , … . ,퐾)
here, 	푗 denotes the number of participants in the group 푖	.
Therefore, for group 퐺 ,
User 푈 	, computes

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)
= 퐶푖푟푐(2,4,8,16,32) ∗ 퐶푖푟푐(2,1,10,11,4)

= 퐶푖푟푐(300,538,446,230,212).
So, 푆 = 푢 + 푠
S =		퐶푖푟푐(−200,9462,999554,
99999770,9999999788)+													퐶푖푟푐(300,538,446,230,212)
S=Circ(100,10000,1000000,100000000,10000000000)
S=Circ(100,100 , 100 , 100 , 100)

Thus, 퐺 = 100.

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)
= 퐶푖푟푐(1,1,1,1,1) ∗ 		퐶푖푟푐(2,1,10,11,4)

= 퐶푖푟푐(28,28,28,28,28).
 So, 	푆 = 푢 + 푠

S= 	퐶푖푟푐(72,9972,999972,
																			99999972, 9999999972) + 퐶푖푟푐(28,28,28,28,28)
 =Circ(100,10000,1000000, 100000000,10000000000)
S = Circ(100,100 , 100 , 100 , 100)
Thus, 퐺 = 100.

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)
							= 퐶푖푟푐(3,9,27,81,243) ∗ 퐶푖푟푐(2,1,10,11,4)

													= 퐶푖푟푐(1392,3450,3090,1284,948).
So, 푆 = 푢 + 푠
S =		퐶푖푟푐(−1292,6550,996910,
99998716,9999999052)+													퐶푖푟푐(1392,3450,3090,1284,948)
S=Circ(100,10000,1000000, 100000000,10000000000)
S =Circ(100,100 , 100 , 100 , 100)
Thus, 퐺 = 100.

푠 = 	 [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)
= 퐶푖푟푐(10,100,1000,10000,100000) 							∗ 퐶푖푟푐(2,1,10,11,4)

= 퐶푖푟푐(211420,1114210,1142200422110,221140).

So, 푆 = 푢 + 푠
S =		퐶푖푟푐(−211320,−1104210,
−142200,99577890,9999778860)+			퐶푖푟푐(211420,1114210,1142200,422110,221140).
S=Circ(100,10000,1000000, 100000000,10000000000)
 S=Circ(100,100 , 100 , 100 , 100).
Thus, 퐺 = 100.

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟)
= 퐶푖푟푐(5,25,125,625,3725) 							 ∗ 퐶푖푟푐(2,1,10,11,4)

= 퐶푖푟푐(11460,44680,43800, 16580,9620).

So, 푆 = 푢 + s
S =		퐶푖푟푐(−11360,−34680,956200,

99983420,9999990380) +
퐶푖푟푐(11460,44680, 43800,

16580,9620)
S=Circ(100,10000,1000000,100000000,10000000000)
S=Circ(100,100 , 100 , 100 , 100)
Thus, 퐺 = 100.

Hence, all the group users of group 퐺
gets the group key 퐾 = 100.

For, group 퐺 ∈	 {푈 ,푈 ,푈 },
User 푈 computes,

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(1,1,1) ∗ 퐶푖푟푐(8,7,6)

= 퐶푖푟푐(21,21,21).
So, 푆 = 푢 + 푠
S =		퐶푖r푐(179,39979,7999979) + 		퐶푖푟푐(21,21,21)
 	S=Circ(200,40000,8000000)
S=Circ(100,200 , 200)
Thus, 퐺 = 200.
User 푈 computes,

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(4,16,64) ∗ 퐶푖푟푐(8,7,6)

= 퐶푖푟푐(576,540,648).
So, 푆 = 푢 + 푠
S=		퐶푖푟푐(−376,39460,7999352)+퐶푖푟푐(576,540,648)
S=Circ(200,40000,8000000)
S=Circ(200,200 , 200).
Thus, 퐺 = 200.
User 푈 	computes,

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(10,100,1000) ∗ 퐶푖푟푐(8,7,6)

= 퐶푖푟푐(7680,6870,8760).
So, 푆 = 푢 + 푠
S=		퐶푖푟푐(−7480,33130,7991240) + 																																					퐶푖푟푐(7680,6870,8760).

 	S = Circ(200,40000,8000000)
S = Circ(200,200 , 200).
Thus, 퐺 = 200.
Hence, all the group users of group 퐺
gets the group key 퐾 = 200.

KGC
1G

2G

3G

1GK

2GK

3GK
1U

2U

2U

4U
5U

6U

3U

5U

1U
4U

7U

For, group 퐺 ∈	 {푈 ,푈 ,푈 },
User 푈 computes,

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(2,4,8) ∗ 퐶푖푟푐(1,3,9)

 = 퐶푖푟푐(62,82,38).
So, 									푆 = 푢 + 푠
S =		퐶푖푟푐(−12,2418,124962)+	퐶푖푟푐(62,82,38).
S=Circ(50,2500,125000)
S=Circ(50,50 , 50)
Thus, 퐺 = 50.
User 푈 computes,

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(3,9,27) ∗ 퐶푖푟푐(1,3,9)

									= 퐶푖푟푐(165,261,81).
So, 								푆 = 푢 + 푠
S =		퐶푖푟푐(−115,2239,124919) + 퐶푖푟푐(165,261,81) .
S=Circ(50,2500,125000)
S=Circ(50,50 , 50)
Thus, 퐺 = 50.

푠 = [퐶] ∗ 퐶푖푟푐(푟 , 푟 , 푟)
= 퐶푖푟푐(7,49,343) ∗ 퐶푖푟푐(1,3,9)
푠 = 퐶푖푟푐(1477,3157,553).

User 푈 computes,
So, 		푆 = 푢 + 푠

S=		퐶푖푟푐(−1427,−657,124447) + 																																				퐶푖푟푐(1477,3157,553) .
S=Circ(50,2500,125000)
S=Circ(50,50 , 50)
Thus, 퐺 = 50.
Hence, all the group users of group 퐺
gets the group key 퐾 = 50.

V SECURITY ANALYSIS

Theorem: The proposed protocol possesses key
freshness, key confidentiality and key authentication.

Proof: Key Freshness: In our proposed protocol for
each new communication session 푚	 new group keys

{퐺 ,퐺 , … … … 	 ,퐺 } associated with
{퐺 ,퐺 , … … ,퐺 } are randomly selected by KGC for
each multi-group key service request. Also, to
compute the group key 퐾 (1 ≤ 푖 ≤ 푚) each group
user 푈 (1 ≤ 푗 ≤ 푛) has to calculate
 푆 = 푢 + 푠 , where

푠 = 퐶 ∗ 퐶푖푟푐 푟 , 푟 , … … , 푟

푠 = (푥 , 푥 , … … ,푥) ∗ 퐶푖푟푐 푟 , 푟 , … … , 푟
Which is a function of shared secrets of each user 푈
and random challenges(public values) 푟 (1 ≤ 푗 ≤ 푛	,
1 ≤ 푖 ≤ 푚) selected by each group member 푈 (1 ≤
푗 ≤ 푛) for each new communication service request.
Thus, it is obvious that the group key 퐾 will be
fresh that is new and different for each new
communication session.

Key Confidentiality: Key secrecy is provided due to
the security feature of SSS based on circulant
matrices for multiple groups. To handle multiple
groups at a time KGC has to select multiple group
keys {퐾 ,퐾 , … … … ,퐾 }, the respective group
members have calculate

							푺풊 = 풖풋풊 + 풔풋풊 (= 푪풊풓풄[푲푮풊
ퟏ ,푲푮풊

ퟐ , … … ,푲푮풊
풕])

Where, 푢 are the public values sent by KGC and

풔풋풊 = [푪풋풊] ∗ 푪풊풓풄 풓ퟏ풊,풓ퟐ풊, … … , 풓풋풊
풔풋풊 = (풙풋ퟏ ,풙풋ퟐ, … … , 풙풋풕) ∗ 푪풊풓풄 풓ퟏ풊,풓ퟐ풊, … … ,풓풋풊

Where 푡 denotes the number of members in the group 퐺 . This shared secret value 푠 assured that only authorized
group member is able to recover the group key 퐾 which is of the form
															푺퐢 = 푪풊풓풄(푲푮풊

ퟏ ,푲푮풊
ퟐ , … … ,푲푮풊

풕)
where 푡 represent the number of members in the
group 퐺 .
Hence, key confidentiality is surely achieved in our
proposed scheme.

Key Authentication: In key distributing phase, the
KGC also compute 퐴푢푡ℎ for all the multiple groups
퐺 simultanously. Also, each user U authenticates
their corresponding groups G by computing

Auth∗i = h(K ,U , U , … . , U , r , r , … , r , u , u , … . , u)

for , 1 ≤ j ≤ n, 1 ≤ i ≤ m.
and then check this hash value by Auth = Auth∗.
Also this key authentication is done only by one
message for each group G .

Theorem(Insider attack): The proposed protocol
UM퐊퐆퐦퐓퐏 is secure against insider attack.
Proof: At the time of registration, each participating
group member U shared his/her long term secret key
x only with KGC (a trusted authority). For each new

communication session a new group key K is
selected by KGC and makes some values u =

S −	s (1 ≤ i ≤ m, 1 ≤ j ≤ n) publicly known.
Then each authorized group member knows their
shared secret x with KGC and public values u is
able to compute the group key K which is of the
form

S = Circ(K , K ,⋯ , K).

Since , S = u + s ,
where ,

퐬퐣퐢 = (퐱퐣ퟏ, 퐱퐣ퟐ, … … , 퐱퐣퐭) ∗ 퐂퐢퐫퐜 퐫ퟏ퐢, 퐫ퟐ퐢, … … , 퐫퐣퐢

Therefore, the secret x ∈ K of each group member
shared with KGC remains unknown to outsiders and
also each authorized group member is able to recover
the group key but not able to obtain other member’s
long term secret x . Thus, our proposed protocol
resist against insider attack.

Theorem (Forward and Backward Secrecy): The
proposed protocol UM퐊퐆퐦퐓퐏 provide backward
and forward secrecy, that is newly joined members
cannot recover the old group keys and those old
members who left the group cannot access the current
group key.
Proof: In our proposed UM퐊퐆퐦퐓퐏 protocol, for
every multi-group session, if new members join in or
old members left from groups, the KGC needs to
distribute new group keys to all existing group
members. In each group the group key K is derived
from the current group members long term secrets x s
and fresh random challengesr . Also, our whole
computation is totally depends on the number of
members in the current group. Thus, the newly joined
members can recover the current group key but
cannot recover the previous group keys and those old
members who left the group cannot recover the
current group key. Thus, our protocol achieves both
forward and backward secrecy of group
communication.

VI CONCLUSION

We defined a new type of, circulant matrices based
key transfer protocol for multi-group
communications. Because of using circulant matrices
as a tool, our proposed multi-group key transfer
protocol takes much less time than other existing
multi-group key transfer protocols. Also all the
required security attributes are addressed in detail and
the confidentiality of our proposed protocol is
unconditionally secure.

REFERENCES

[1] A. Shamir, “How to share a secret ”, Commun.
ACM vol. 22, no. 11, pp. 612-613, Nov.
(1979).

[2] C.F. Hsu, L. Harn, Y. Mu, M. Zhang, X. Zhu,
“Computation efficient key establishment in
wireless group communications ”, wireless
network , vol. 23, PP. 289-297, (2016).

[3] C.F. Hsu, L. Harn, B. Zeng, “UMKESS: user

oriented multigroup key establishments using
secret sharing”, wireless networks ,(2018).

[4] C. Rajarama, J. N. Sugatoor, T. Y. Swamy, “
Diffie-Hellman type key exchange, ElGamal like
ecryption/decryption and proxy re-encryption
using circulant matrices ”, International Journal
of Network Security, vol. 20, no. 4, PP. 617-
624, July (2018).

[5] C.S. Laih and J. Y. Lee, “A new threshold

scheme and its applications in designing the
conference key distribution cryptosystem”, Inf.
Process. Lett., vol. 32, no. 3, PP. 95-99, (1989).

[6] C.Y. Lee, Z.H. Wang, L.Harn , C.C. Chang,

“Secure key transfer protocol based on secret
sharing for group communications”, IEICE
Trans. Inf. & Syst. , vol. E94-D, no. 11, (2011).

[7] G. R. Blakely, “Safegaurding cryptographic

keys” , in proc. AFIPS 1979, National Computer
Conference, PP. 313-317. AFIPS, (1979).

[8] G. Saze, “Generation of key predistribution

schemes using secret sharing schemes ”, Discrete
Applied Mathematics , vol. 128, PP. 239-249,
(2003).

[9] L. Ch, J. Pieprzyk, “Conference key agreement

from secret sharing ”, Proc. Fourth Australasian
Conf. Information Security and
Privacy(ACISP’99), PP. 64-76, (1999).

[10] L. Harn, C. Lin, “Authenticated group key

transfer protocol based on secret sharing”, IEEE
Trans. Comuter , vol. 59, no. 6, PP. 842-846,
(2010).

[11] L. Harn, G. Gong, “Conference key

establishment protocol using a multivariate
polynomial and its applications”, Security and
Communication Networks, vol. 8, no. 9, PP.
1794-1800,(2014).

[12] L. Harn, C. Lin, “Efficient group Diffie-Hellman

key agreement protocols”, Comput. Elect. Eng.,
(2014).

[13] R. F. Olimid, “Cryptanalysis of a password

based group key exchange protocol using secret
sharing”, Appl. Math. Inf. Sci., vol. 7, no. 4, PP.
1585-1590,(2013).

[14] S. Nathani, B.P. Tripathi, “ An authenticated and

secure group key transfer protocol with circulant
matrices”, Journal of Computer and
Mathematical Sciences , vol. 9, no.12, PP. 2086-
2095, (2018).

