
UMKGm TP:  User Friendly Multi Group Key Transfer Protocol with 
Circulant Matrices 

Shruti Nathani1, B.P. Tripathi2, S.K. Bhatt3 
1,2,3Dept. of Mathematics,  Govt.  N.P.G. College of Science, Raipur (C.G.) India.

ABSTRACT 
Most existing traditional group key distribution protocols are largely designed for a single group. They establish a 
single key for a single group. Many group oriented applications require multi-group key establishments at time. In 
which user may join multiple groups simultaneously.  Recently, in 2018, C.F. Hsu et al. gave new type of user 
oriented multi-group key establishments using secret sharing (UMKESS). As many other group Key establishments 
schemes this protocol (UMKESS) is also polynomial based in which to distribute and recover the secret group key, 
the key generation centre(KGC) and each group member has to solve 푡-degree interpolating polynomial. Inspire 
from Hsu et al.’s UMKESS, in this paper, we present a new design of user friendly group key distribution protocol 
using secret sharing with circulant matrices. Because of using circulant matrices as a tool, our proposed protocol  
푈푀퐾 푇푃 is become more efficient, secure and robust. Also, all the required security features of group 
communications are handle in 푈푀퐾 푇푃. 
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I INTRODUCTION 

The traditional one to one communication has been 
expanded into one-to-many and many-to-many 
communication. This type of communications 
involving multiple users(n ≥ 2) are called group 
communication [11]. For a secure group 
communication a group key is needed to be shared 
among all the group members. That is, before 
exchanging communication messages a key 
establishment protocol must be used to construct the 
session keys for legitimate participants in the 
communication [19]. This session a key is then uses 
by the group users to communicate their secrets, to 
encrypt and decrypt sensitive information and to 
authenticate messages in the group. 
The group key establishment protocols are often 
classified into two types:[2] 
(a) Centralized, also called distributive group key 

establishment protocols, where a server is 
responsible for generate a group key and 
distribute the group key to all the group 
members. This type of protocols is also called 
GKT/GKD protocol. 

(b) Distributed, also called, contributory group key 
establishment, in which there is no server, is 
required and group key is generated by the 
contribution of all the group members. This type 
is also known as group key agreement (GKA) 
protocol.  

In the past few years a large amount of research work 
on group key transfer protocol has been published in 
the literatures. The most widely used group key 
transfer protocols are based on secret sharing 
scheme(SSS), which was first introduced by both 
Blakley[7 ] and Shamir[1], independently in 1979. 
Then the first group key transfer protocol using secret 
sharing scheme (SSS) is proposed in 1989 by Laih et 
al.[5]. Later, there are several other group key 
transfer protocols [8,9,10] following the same 
concept of using SSS was proposed. 

In 2010, Harn et al.[10] proposed, a first 
authenticated GKT protocol based on SSS. The 
confidentiality and authentication of this novel GKT 
protocol is information theoretically secure.  But, in 
this protocol, to distribute and recover the secret 
group key, KGC and each group member has to 
compute a t-degree interpolating polynomial. At the 
same time, many research articles [ 11,12,13,16,17] 
based on Harn et al.’s[10] authenticated protocol 
using SSS with the computation of a t-degree 
interpolating polynomial has been proposed. 

To overcome, this drawback, in 2016, Hsu et al. [2] 
gave an efficient GKT protocol. In their scheme the 
information related to group keys was hidden by 
vandermonde matrix and to distribute the group key 
efficiently they employed linear secret sharing 
scheme on vandermonde matrix, which reduces the 
computation load of each group member. 

Recently in 2018, S. Nathani et al.[14] also gave an 
authenticated and secure GKT protocol based on 
secret sharing scheme with circulant matrices. But all 
this above cited conventional GKT protocols can 
establish a single group key at a time, that is, 
establish a single group key for a single group. 

With the rapid development of group oriented 
services such as business conferencing system, 
wireless body area network, programmable routey 
communications and file sharing tools etc, require 
more and more multi-group communications in 
which users may join multiple groups 
simultaneously. 

Recently, a new type of user oriented multi-group 
key establishments using secret sharing (UMKESS) 
is proposed by C.F. Hsu et al.[3] in 2018. This multi-
group key establishment scheme is also polynomial 
based. That means, again to distribute and recover the 
secret group key, KGC and each group member has 
to solve t degree interpolating polynomial. 



Therefore, inspire from C.F. Hsu et al.’s [3], 
UMKESS protocol, we extend our conventional GKT 
protocol [14] into multi-group key transfer protocol 
on SSS with circulant matrices. In this paper, we 
propose a new design of user friendly multi-group 
key distribution protocol using SS with circulant 
matrices. 
Some unique features of our protocol are summarized 
below: 

 A circulant matrices based key distribution 
protocol for multi-group communications 
is proposed. 

 We use circulant matrix as a tool and 
present an efficient computation of group 
keys. Since information related to group 
keys is a hidden using circulant matrix. 
Thus, each participating group member 
and KGC has to calculate only first row of 
the matrix. This gives us much less 
computational complexity. 

 Each user keeps only one share with KGC 
at the time of registration and the share 
can be used to recover multiple group 
keys. 

 In the whole proposed scheme, the group 
key is authenticated by each user of 
distinct groups and KGC. Also, 
authentication has been done by only one 
message in each group. 

 The KGC can manage user joining or 
leaving dynamically. There has no 
rekeying overhead. 

 All the required security features are 
handling in our proposed multi-group key 
transfer protocol. 

 
II PRELIMINARIES 

(a) Secret Sharing: In a secret sharing scheme, a 
secret S is divided into n shares and shared 
among a set of n shareholders by a mutually 
trusted dealer in such a way that authorized 
subset of shareholders can reconstruct the secret 
but unauthorized subset of share holders cannot 
determine the secret. If any unauthorized subset 
of shareholders cannot obtain any information 
about the secret, then the scheme is called 
perfect.[2] 

(b) Circulant Matrix:[4]A Circulant matrix is a 
square matrix where, given the first row, the 
successive rows are obtained by cyclically right 
shifting the present row by one element. Thus 
the i row of a circulant matrix of size (n × n) is 
obtained by cyclically right shifting the		(i −
1) ) row by one position, for i = 2	to	n  , given 
the first row. Let the first row be the row vector                 
,[c(1), c(2), … . . , c(n− 1), c(n)].  Then the 
circulant matrix C is obtained as 

C =
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The most important property of circulant matrices is they are multiplicatively commutative. 
 
(c) SSS based on Circulant matrix for multi-

group communications: Suppose a group of 
n	participants {U , U , U ,⋯ , U } want to 
communicate in a secure multi-group 
communication with their long term secrets 
{x , x , … . . x } shared with only KGC. Also for 
multi-groups communication we have to take a 
batch of group {G , G , … . , G 	} and a mutually 

trusted KGC. Actually this scheme consists of 
two algorithms [14]. 

(d) Secret generation algorithm: To form Circulant 
matrix for each user U (1 ≤ i ≤ n) in each 
particular group G (1 ≤ i ≤ m) KGC  first picks 
the shared secret x  of  each user U 	and make 
circulant matrix [C ] as below : 

     

[C ] =
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= Circ(x , x , … … … . . , x ) 
                       where 1 ≤ j ≤ n  
and m denotes the number of group users in each particular group G  and then calculate the secrets of S  of each user 
U (1 ≤ j ≤ n) by computing  
  S = [C ] ∗ Circ(r , r , … … , r )  
                                  for 1 ≤ j ≤ n, 1 ≤ i ≤ m    
 
Thus, this algorithm outputs with a list of secret shares S (1 ≤ j ≤ n, 1 ≤ i ≤ m			). 



 
(e) Secret Reconstruction Algorithm: This algorithm takes all the shares 푆 (1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚) each 

participating member 푈  has long term private key 푥  
and public vector → = (푟 , 푟 , … … , 푟 ) as inputs and outputs the secret 

                   		푆 = 푠 + 푠 +⋯+ 푠                       
by computing each product 

푺풋풊 = 푪풊풓풄 풙풋ퟏ,풙풋ퟐ, … … ,풙풋풎 .푪풊풓풄(풓ퟏ풊,풓ퟐ풊, … ,풓풋풊) 
(풇풐풓	ퟏ ≤ 풋 ≤ 풏,ퟏ ≤ 풊 ≤ 풎). 

 
III PROPOSED   PROTOCOL 

We suppose that there are 푛 users {푈 ,푈 , … … ,푈 } 
participated in multi-group communications. Each 
user is required to register itself at KGC and KGC 
keeps tracking all the registered group member which 
includes removing any unsubscribed group 
participants or adding new member. To achieve 
secure multi-group communications, KGC has to 
selects multi-group session keys for all the running 
groups simultaneously and securely distributes these 
keys to all the valid registered members of particular 
groups. Therefore, the only valid members who 
belong to that particular group can easily derive this 
group’s session key.  

The proposed group key transfer protocol for multi-
group communications consist of three phases: 
Initialization, user registration, multi group key 
distribution and establishment. Here we assume that 
there are 푛 users {푈 ,푈 , … … ,푈 } participated in 
multi-group communications denoted by 
{퐺 ,퐺 , … … ,퐺 }. 
(a) Initialization: The KGC selects a safe large 

prime 푝, and a secure one way hash function 
ℎ(. ) whose domain is GF(p). The KGC 
publishes 푝 and ℎ(. ). 

(b) User Registration: Each user is required to 
register at the KGC for subscribing the key 
distribution service. The KGC keeps tracking all 
the registered users or adding new users. During 
the registration each user 푈 (1 ≤ 푗 ≤ 푛) shares 
his/her long term secret 푥 ∈ 퐾, (1 ≤ 푗 ≤ 푛) 
with KGC in a secure manner. 

(c) Multi-group key generation, distribution and 
establishment: Suppose a group of 푛 members 
{푈 ,푈 , … … ,푈 } want to communicate in a 
secure multi-group communication with their 
long term secrets {푥 ,푥 , … … ,푥 } shared with 
only trusted party KGC secretly. Here we also 
assume a batch of groups {퐺 ,퐺 , … … ,퐺 } 
which are handle by KGC simultaneously. The 
process of multigroup key generation, 
distribution and establishment contain five steps: 

(i) Step 1:  The initiator sends a key generation 
request to KGC for multiple groups with a 
list of groups {퐺 ,퐺 , … … ,퐺 } and each 
group is represented as 
퐺 = 푈 ,푈 , … … ,푈 , 1 ≤ 푖 ≤
푚	푤ℎ푒푟푒	푗 ∈ {1,2,⋯ ,푛}. 

(ii) Step 2:  KGC finally broadcast the list of all 
groups {퐺 ,퐺 , … … ,퐺 }	to all members as a 
response. 

(iii) Step 3:  For each group member 푈 , 1 ≤ 푗 ≤
푛, he/she decides to join more than one 
groups 퐺 (1 ≤ 푖 ≤ 푚) simultaneously. Then 
each group user sends their random value 
푟 , (for 1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚) for each 
group 퐺  in which they want to join. 

(iv) Step 4: Now KGC received all the random 
values send by all the group participants 
푈 , (1 ≤ 푗 ≤ 푛). Then KGC broadcast the 
actual list of participants of each particular 
group according their random values sent by 
each group user. This list of number of 
participants in each particular group helps 
the group participants to make circulant 
matrices. 

(v) Step 5: Now KGC randomly selects the 
group keys 퐾 (1 ≤ 푖 ≤ 푚) for all the 
groups 퐺 (1 ≤ 푖 ≤ 푚). Then KGC compute 
the secrets 푆 (1 ≤ 푗 ≤ 푚) of each user 푈  in 
each particular group 퐺 (1 ≤ 푖 ≤ 푚) by 
computing the product 

[Circulant matrices of shared secrets of each user 
푼풋 in the group 푮풊]* [Circulant matrix of random 
values 풓풋풊	of each user 푼풋 in the group 푮풊] =풔풋풊. 
(1 ≤ 푖 ≤ 푚, 1 ≤ 푗 ≤ 푛) 
[퐶 ] *퐶푖푟푐 푟 , 푟 , … . . , 푟 = 푠  
Here, m denotes the number of members in the group 
퐺 . After this computation of secret of each user 푈  in 
particular groups, KGC also computes some 
additional values 푢 = 푆 − 푠 	,	where  
푆 = 퐶푖푟푐 퐾 ,퐾 , … … ,퐾 , 	, 
for 1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚   and 

퐴푢푡ℎ 	 			= ℎ(퐾 ,푈 ,푈 , … . ,푈 , 푟 , 푟 , … , 푟 , 푢 ,푢 , … . ,푢 ) 
for , 1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚.  
At last, finally KGC broadcast  (퐴푢푡ℎ	 	, 푢  for 1 ≤ 푖 ≤ 푚, 1 ≤ 푗 ≤ 푛. 
   Here, 푖	represents number of groups and 푗 represents number of  participants in each group 퐺 . 

(vi) Step: 6  Now each participating group member 푈 , 1 ≤ 푗 ≤ 푛, knowing their corresponding public value 
푢 ,	in each particular group 퐺 , (1 ≤ 푖 ≤ 푚),	is able to compute the product  

퐶 ∗ 퐶푖푟푐 푟 , 푟 , … … , 푟 = 푠  



and recover the group key 퐾  by computing, 
푆 = (푢 + 푠 ) 

Which is of the form  
푆 = 퐶푖푟푐(퐾 ,퐾 , … . . . .퐾 ) 

(for , 1 ≤ 푗 ≤ 푛 , 1 ≤ 푖 ≤ 푚) 
Afterwards, each 푢 , (푓표푟	1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚) authenticates their corresponding groups 퐺 by computing  
퐴푢푡ℎ	

∗ 		= 															ℎ(퐾 ,푈 ,푈 , … . ,푈 , 푟 , 푟 , … , 푟 ,푢 , 푢 , …푢 )        
for 1 ≤ 푗 ≤ 푛, 1 ≤ 푖 ≤ 푚   
and then checks this value  by  

퐴푢푡ℎ = 퐴푢푡ℎ∗. 
If this result is correct then each participant 푈 (1 ≤ 푗 ≤ 푛),	 in the group 퐺 (1 ≤ 푖 ≤ 푚) authenticates the group key 
퐾 	is sent from KGC. 

 
IV AN EXAMPLE 

In our example we assume a group of 7 members 
{푈 ,푈 ,푈 ,푈 ,푈 ,푈 ,푈 } want to generate a secure 
group communications in multiple groups 
simultaneously. 
(a) User Registration: During registration each user 

푈 , 1 ≤ 푗 ≤ 7, shares his/her long term secrets 
푥 ∈ 퐾 with KGC. Suppose 	푈 	Shares 푥 =
2, 	푈 	Shares 푥 = 1, 	푈 	Shares 푥 =
4, 	푈 	Shares 푥 = 3, 	푈 								Shares 푥 =
10, 	푈 					Shares 푥 = 5, 	푈 		Shares 푥 = 7	in  a  
secure manner. KGC publishes ℎ(∙) . 

(b) Group Key Generation and Distribution:   
In our example we assume a batch of 
groups{퐺 ,퐺 ,퐺 }	, in which there 7 group members 
want to join simultaneously. 

Step 1: Suppose 푈 (푖푛푖푡푖푎푡표푟) sends a key 
generation request to KGC with a list of groups  
{퐺 ,퐺 ,퐺 }. 
Step 2: KGC broadcast the list of groups {퐺 ,퐺 ,퐺 } 
to all members as a response.  
Step 3: Here each group member 푈 , (1 ≤ 푗 ≤ 7), 
he/she decides to join more than one groups 퐺 , (	1 ≤
푖 ≤ 3). Then each group participants sends their 
radom values 푟 ,	for  each group 퐺  in which they 
want to join. 
   Suppose ,푈  sends 푟 = 2, 푟 = 1  , 푈  sends 
푟 = 1, 		푟 = 8 , 푈  sends 푟 = 2, 	푈  sends 
푟 = 10, 푟 = 3, 푈  sends 푟 = 11, 		푟 = 6	, 푈  
sends 푟 = 4, 푟 = 2	, 		푈   sends 	푟 = 9			to 
KGC. 
 
Step 4: Now KGC received all the random keys send 
by the 7 users {푈 ,푈 ,푈 ,푈 ,푈 ,푈 ,푈 }. 
Then, KGC broadcast the actual list of participants 
푈 (1 ≤ 푗 ≤ 7) of each particular group 퐺 (1 ≤ 푖 ≤
5). That means KGC broadcast 

({푈 ,푈 ,푈 ,푈 ,푈 , } ∈ 퐺 , 
{푈 ,푈 ,푈 } 	 ∈ 퐺 ,			{푈 ,푈 ,푈 } ∈ 퐺 ) list of all group members publicly. 
Step 5: Now KGC randomly selects the 3 group keys 퐾 = 100, 퐾 = 200, 퐾 = 50		,	to all the 3 groups 
{퐺 ,퐺 ,퐺 }. 
Now KGC compute the secrets 푠  of each user 푈 	of each particular groups 퐺 (1 ≤ 푗 ≤ 7, 1 ≤ 푖 ≤ 3). 
For this KGC, first has to make the circulant matrices of each participating group user 푈 (1 ≤ 푗 ≤ 7) in each 
particular group 퐺 (1 ≤ 푖 ≤ 3), with the help of their corresponding  shared secret values. 

푥 = 2, 푥 = 1, 푥 = 4,푥 = 3,푥 = 10, 푥 = 5, 푥 = 7 
That means,  for  퐺 , {푈 ,푈 ,푈 ,푈 ,푈 , }, 

퐶 = 퐶푖푟푐(2 , 2 , 2 , 2 , 2 ) = 퐶푖푟푐(2,4,8,16,32) 
    퐶 = 퐶푖푟푐(1 , 1 , 1 , 1 , 1 ) = 퐶푖푟푐(1,1,1,1,1) 

퐶 = 퐶푖푟푐(3 , 3 , 3 , 3 , 3 ) = 퐶푖푟푐(3,9,27,81,243)		 
퐶 = 퐶푖푟푐(10 , 10 , 10 , 10 , 10 ) = 퐶푖푟푐(10,100,1000,10000,100000) 

퐶 = 퐶푖푟푐(5 , 5 , 5 , 5 , 5 ) = 퐶푖푟푐(5,25,125,625,3125) 
Then, 푠 = 							 [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 

= 퐶푖푟푐(2,4,8,16,32) ∗ 퐶푖푟푐(2,1,10,11,4) 
= 퐶푖푟푐(300,538,446,230,212). 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 
= 퐶푖푟푐(1,1,1,1,1) ∗ 		퐶푖푟푐(2,1,10,11,4) 

= 퐶푖푟푐(28,28,28,28,28). 
푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 

= 퐶푖푟푐(3,9,27,81,243) ∗ 퐶푖푟푐(2,1,10,11,4) 
= 퐶푖푟푐(1392,3450,3090,1284,948). 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 
= 퐶푖푟푐(10,100,1000,10000,100000) 							∗ 퐶푖푟푐(2,1,10,11,4) 

= 퐶푖푟푐(211420,1114210,1142200, 



422110,221140) 
푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 

= 퐶푖푟푐(5,25,125,625,3725) 							 ∗ 퐶푖푟푐(2,1,10,11,4) 
= 퐶푖푟푐(11460,44680,43800, 

16580,9620) 
 
For group G ,  {푈 ,푈 ,푈 }, 
 

퐶 = 퐶푖푟푐(1 , 1 , 1 ) = 퐶푖푟푐(1,1,1). 
 
																퐶 = 퐶푖푟푐(4 , 4 , 4 ) = 																																																													퐶푖푟푐(4,16,64). 
															퐶 = 퐶푖푟푐(10 , 10 , 10 ) = 																																																				퐶푖푟푐(10,100,1000). 
Then, 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(1,1,1) ∗ 퐶푖푟푐(8,7,6) 

= 퐶푖푟푐(21,21,21). 
푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(4,16,64) ∗ 퐶푖푟푐(8,7,6) 

= 퐶푖푟푐(576,540,648). 
푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 

= 퐶푖푟푐(10,100,1000) ∗ 퐶푖푟푐(8,7,6) 
= 퐶푖푟푐(7680,6870,8760). 

 
For group 퐺 ,  {푈 ,푈 ,푈 }, 
 

퐶 = 퐶푖푟푐(2 , 2 , 2 ) = 퐶푖푟푐(2,4,8). 
 
퐶 = 퐶푖푟푐(3 , 3 , 3 ) = 																																							퐶푖푟푐(3,9,27). 
퐶 = 퐶푖푟푐(7 , 7 , 7 ) = 																														퐶푖푟푐(7,49,343). 
Then, 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟c(2,4,8) ∗ 퐶푖푟푐(1,3,9) 

 
= 퐶푖푟푐(62,82,38). 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(3,9,27) ∗ 퐶푖푟푐(1,3,9) 

									= 퐶푖푟푐(165,261,81). 
푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 

= 퐶푖푟푐(7,49,343) ∗ 퐶푖푟푐(1,3,9) 
푠 = 퐶푖푟푐(1477,3157,553). 

 
Now, KGC computes the five additional values for group 퐺 , 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100 ) 		− 퐶푖푟푐(300,538,446,230,212). 

= 퐶푖푟푐(−200,9462,999554,99999770, 
9999999788). 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100 ) 		− 퐶푖푟푐(28,28,28,28,28). 

= 퐶푖푟푐(72,9972,999972,99999972,	 
9999999972). 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100 ) 		− 퐶푖푟푐(1392,3450,3090,1284,948). 

= 퐶푖푟푐(−1292,6550,996910,99998716 
, 9999999052). 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100 ) 		− 퐶푖푟푐 211420, 1114210,1142200,

422110, 221140 . 



= 퐶푖푟푐(−211320,−1104210,−142200, 
99577890,9999778890). 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(100 , 100 , 100 , 100 , 100 ) 		− 퐶푖푟푐(11460,44680,43800,16580,9620). 

= 퐶푖푟푐(−11360,−34680,956200,99983420, 
9999990380). 
and the value of 
퐴푢푡ℎ = ℎ(퐾 = 100, {푈 ,푈 ,푈 ,푈 ,푈 }, 푟 , 푟 , 푟 , 푟 , 	푟 ,푢 ,푢 ,푢 ,푢 ,푢 ) . 
 
KGC computes three additional values for group 퐺 , 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(200 , 200 , 200 ) 		− 퐶푖푟푐(21,21,21) 

= 퐶푖푟푐(179,39979,7999979). 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(200 , 200 , 200 ) 		− 퐶푖푟푐(576,540,648) 

= 퐶푖푟푐(−376,39460,7999352). 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(200 , 200 , 200 ) 							− 퐶푖푟푐(7680,6870,8760) 

= 퐶푖푟푐(−7480,33130,7991240). 
and the value of  
퐴u푡ℎ = ℎ 퐾 = 200, {푈 ,푈 ,푈 }, 푟 , 푟 , 푟 ,푢 ,푢 ,푢 . 
 
Also, KGC has to compute 3 additional values for group 퐺 ∈ {푈 ,푈 ,푈 }. 
 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(50 , 50 , 50 ) 		− 퐶푖푟푐(62,82,38) 

= 퐶푖푟푐(−12,2418,124962). 
푢 = 푆 − 푠  

푢 = 퐶푖푟푐(50 , 50 , 50 ) 		− 퐶푖푟푐(165,261,81) 
= 퐶푖푟푐(−115,2239,124919). 

푢 = 푆 − 푠  
푢 = 퐶푖푟푐(50 , 50 , 50 ) 		− 퐶푖푟푐(1477,3157,553) 

= 퐶푖푟푐(−1427,−657,124447). 
and the value of 

퐴푢푡ℎ = ℎ 퐾 = 50, {푈 ,푈 ,푈 }, 푟 , 푟 , 푟 , 푢 ,푢 ,푢 . 
Thus, KGC finally broadcast,  

{퐴푢푡ℎ ,퐴푢푡ℎ ,퐴푢푡ℎ , 푢 ,푢 ,푢 ,푢 ,푢 , 
푢 ,푢 ,푢 , , {푢 ,푢 ,푢 } }. 

 
Step 6: At last to compute the common group key, each participating group members of group,  

퐺 ∈ {푈 ,푈 ,푈 ,푈 ,푈 }, 퐺 ∈ {푈 ,푈 ,푈 }, 
, 퐺 ∈ {푈 ,푈 ,푈 }, 

has to solve the equation 
푆 = (푢 + 푠 ) 

where, 푆 = 퐶푖푟푐(퐾 ,퐾 , … . ,퐾 )  
here, 	푗 denotes the number of participants in the group 푖	.  
Therefore, for group 퐺 , 
User 푈 	, computes 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 
= 퐶푖푟푐(2,4,8,16,32) ∗ 퐶푖푟푐(2,1,10,11,4) 

= 퐶푖푟푐(300,538,446,230,212). 
So, 푆 = 푢 + 푠  
S =		퐶푖푟푐(−200,9462,999554, 
99999770,9999999788)+													퐶푖푟푐(300,538,446,230,212) 
S=Circ(100,10000,1000000,100000000,10000000000) 
S=Circ(100,100 , 100 , 100 , 100 ) 



Thus, 퐺 = 100. 
 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 
= 퐶푖푟푐(1,1,1,1,1) ∗ 		퐶푖푟푐(2,1,10,11,4) 

= 퐶푖푟푐(28,28,28,28,28). 
      So, 	푆 = 푢 + 푠  
 
S= 	퐶푖푟푐(72,9972,999972, 
																			99999972, 9999999972) +               퐶푖푟푐(28,28,28,28,28) 
   =Circ(100,10000,1000000, 100000000,10000000000) 
S = Circ(100,100 , 100 , 100 , 100 ) 
Thus, 퐺 = 100. 
 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 
							= 퐶푖푟푐(3,9,27,81,243) ∗ 퐶푖푟푐(2,1,10,11,4) 

													= 퐶푖푟푐(1392,3450,3090,1284,948). 
So, 푆 = 푢 + 푠  
S =		퐶푖푟푐(−1292,6550,996910, 
99998716,9999999052)+													퐶푖푟푐(1392,3450,3090,1284,948) 
S=Circ(100,10000,1000000,     100000000,10000000000) 
S =Circ(100,100 , 100 , 100 , 100 ) 
Thus, 퐺 = 100. 
 

푠 = 	 [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 
= 퐶푖푟푐(10,100,1000,10000,100000) 							∗ 퐶푖푟푐(2,1,10,11,4) 

= 퐶푖푟푐(211420,1114210,1142200422110,221140). 
 
So, 푆 = 푢 + 푠  
S =		퐶푖푟푐(−211320,−1104210, 
−142200,99577890,9999778860)+			퐶푖푟푐(211420,1114210,1142200,422110,221140). 
S=Circ(100,10000,1000000, 100000000,10000000000) 
     S=Circ(100,100 , 100 , 100 , 100 ). 
Thus, 퐺 = 100. 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 , 푟 , 푟 ) 
= 퐶푖푟푐(5,25,125,625,3725) 							 ∗ 퐶푖푟푐(2,1,10,11,4) 

= 퐶푖푟푐(11460,44680,43800, 16580,9620). 
 
So, 푆 = 푢 + s  
S =		퐶푖푟푐(−11360,−34680,956200, 

99983420,9999990380) + 
퐶푖푟푐(11460,44680, 43800, 

16580,9620) 
S=Circ(100,10000,1000000,100000000,10000000000)       
S=Circ(100,100 , 100 , 100 , 100 ) 
Thus, 퐺 = 100. 
 
Hence, all the group users of group 퐺  
gets the group key 퐾 = 100.  
 
For, group 퐺 ∈	 {푈 ,푈 ,푈 }, 
User 푈   computes,  

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(1,1,1) ∗ 퐶푖푟푐(8,7,6) 

= 퐶푖푟푐(21,21,21). 
So, 푆 = 푢 + 푠  
S =		퐶푖r푐(179,39979,7999979) + 		퐶푖푟푐(21,21,21) 
    	S=Circ(200,40000,8000000) 
S=Circ(100,200 , 200 ) 
Thus, 퐺 = 200. 
User 푈  computes, 



푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(4,16,64) ∗ 퐶푖푟푐(8,7,6) 

= 퐶푖푟푐(576,540,648). 
So, 푆 = 푢 + 푠  
S=		퐶푖푟푐(−376,39460,7999352)+퐶푖푟푐(576,540,648) 
S=Circ(200,40000,8000000) 
S=Circ(200,200 , 200 ). 
Thus, 퐺 = 200. 
User 푈 	computes, 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(10,100,1000) ∗ 퐶푖푟푐(8,7,6) 

= 퐶푖푟푐(7680,6870,8760). 
So, 푆 = 푢 + 푠  
S=		퐶푖푟푐(−7480,33130,7991240) + 																																					퐶푖푟푐(7680,6870,8760). 
 
  	S = Circ(200,40000,8000000) 
S   = Circ(200,200 , 200 ). 
Thus, 퐺 = 200. 
Hence, all the group users of group 퐺  
gets the group key 퐾 = 200.  
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For, group 퐺 ∈	 {푈 ,푈 ,푈 }, 
User 푈   computes,  

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(2,4,8) ∗ 퐶푖푟푐(1,3,9) 

              = 퐶푖푟푐(62,82,38). 
So, 									푆 = 푢 + 푠  
S =		퐶푖푟푐(−12,2418,124962)+	퐶푖푟푐(62,82,38). 
S=Circ(50,2500,125000) 
S=Circ(50,50 , 50 ) 
Thus, 퐺 = 50. 
User 푈  computes,  

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(3,9,27) ∗ 퐶푖푟푐(1,3,9) 

									= 퐶푖푟푐(165,261,81). 
So, 								푆 = 푢 + 푠  
S =		퐶푖푟푐(−115,2239,124919) + 퐶푖푟푐(165,261,81) . 
S=Circ(50,2500,125000) 
S=Circ(50,50 , 50 ) 
Thus, 퐺 = 50. 

푠 = [퐶 ] ∗ 퐶푖푟푐(푟 , 푟 , 푟 ) 
= 퐶푖푟푐(7,49,343) ∗ 퐶푖푟푐(1,3,9) 
푠 = 퐶푖푟푐(1477,3157,553). 

User 푈  computes, 
So, 		푆 = 푢 + 푠  



S=		퐶푖푟푐(−1427,−657,124447) + 																																				퐶푖푟푐(1477,3157,553) . 
S=Circ(50,2500,125000) 
S=Circ(50,50 , 50 ) 
Thus, 퐺 = 50. 
Hence, all the group users of group 퐺  
gets the group key 퐾 = 50. 
                  

V SECURITY ANALYSIS 

Theorem: The proposed protocol possesses key 
freshness, key confidentiality  and key authentication. 
 
Proof:  Key Freshness: In our proposed protocol for 
each new communication session 푚	 new group keys 

{퐺 ,퐺 , … … … 	 ,퐺 } associated with 
{퐺 ,퐺 , … … ,퐺 } are randomly selected by KGC for 
each multi-group key service request. Also, to 
compute the group key 퐾 (1 ≤ 푖 ≤ 푚) each group 
user 푈 (1 ≤ 푗 ≤ 푛) has to calculate 
                                푆 = 푢 + 푠 ,  where 

푠 = 퐶 ∗ 퐶푖푟푐 푟 , 푟 , … … , 푟  
 
 

푠 = (푥 , 푥 , … … ,푥 ) ∗ 퐶푖푟푐 푟 , 푟 , … … , 푟  
Which is a function of shared secrets of each user 푈  
and random challenges(public values) 푟 (1 ≤ 푗 ≤ 푛	,
1 ≤ 푖 ≤ 푚) selected by each group member 푈 (1 ≤
푗 ≤ 푛) for each new communication service request. 
Thus, it is obvious that the group key 퐾  will be 
fresh that is new and different for each new 
communication session. 

 
Key Confidentiality: Key secrecy is provided due to 
the security feature of SSS based on circulant 
matrices for multiple groups. To handle multiple 
groups at a time KGC has to select multiple group 
keys {퐾 ,퐾 , … … … ,퐾 },  the respective group 
members have calculate  

							푺풊 = 풖풋풊 + 풔풋풊 (= 푪풊풓풄[푲푮풊
ퟏ ,푲푮풊

ퟐ , … … ,푲푮풊
풕 ])  

 
Where, 푢  are the public values sent by  KGC and  

풔풋풊 = [푪풋풊] ∗ 푪풊풓풄 풓ퟏ풊,풓ퟐ풊, … … , 풓풋풊  
풔풋풊 = (풙풋ퟏ ,풙풋ퟐ, … … , 풙풋풕) ∗ 푪풊풓풄 풓ퟏ풊,풓ퟐ풊, … … ,풓풋풊  

Where 푡 denotes the number of members in the group 퐺 . This shared secret value 푠  assured that only authorized 
group member is able to recover the group key 퐾  which is of the form  
															푺퐢 = 푪풊풓풄(푲푮풊

ퟏ ,푲푮풊
ퟐ , … … ,푲푮풊

풕 )  
where 푡 represent the number of members in the 
group 퐺 .  
Hence, key confidentiality is surely achieved in our 
proposed scheme. 
 

Key Authentication: In key distributing phase, the 
KGC also compute 퐴푢푡ℎ  for all the multiple groups 
퐺  simultanously. Also,  each user U  authenticates 
their corresponding groups G  by computing  

 
Auth∗i = h(K ,U , U , … . , U , r , r , … , r , u , u , … . , u ) 

for , 1 ≤ j ≤ n, 1 ≤ i ≤ m.  
and then check this hash value by  Auth = Auth∗. 
Also this key authentication is done only by one 
message for each group G . 

Theorem(Insider attack): The proposed protocol 
UM퐊퐆퐦퐓퐏  is secure against insider attack. 
Proof:  At the time of registration, each participating 
group member U  shared his/her long term secret key 
x  only with KGC (a trusted authority). For each new 

communication  session a new group key K  is 
selected by KGC and makes some values u =

S −	s (1 ≤ i ≤ m, 1 ≤ j ≤ n) publicly  known. 
Then each  authorized group member knows their 
shared secret  x  with KGC and  public values u  is 
able to compute the group key K  which is of the 
form  

 
S = Circ(K , K ,⋯ , K ). 

 
Since ,   S = u + s , 
where , 
        

퐬퐣퐢 = (퐱퐣ퟏ, 퐱퐣ퟐ, … … , 퐱퐣퐭) ∗ 퐂퐢퐫퐜 퐫ퟏ퐢, 퐫ퟐ퐢, … … , 퐫퐣퐢  



Therefore, the secret x ∈ K of each group member 
shared with KGC remains unknown to outsiders and 
also each authorized group member is able to recover 
the group key but not able to obtain other member’s 
long term secret x .  Thus, our proposed protocol 
resist against insider attack.                         
  
Theorem (Forward and Backward Secrecy): The 
proposed protocol UM퐊퐆퐦퐓퐏  provide backward 
and forward secrecy, that is newly joined members 
cannot  recover the old group keys and those old 
members who left the group cannot access the current 
group key.  
Proof: In our proposed UM퐊퐆퐦퐓퐏  protocol, for 
every multi-group session, if new members join in or 
old members left from groups, the KGC needs to 
distribute new group keys to all existing group 
members. In each group the group key K  is derived 
from the current group members long term secrets x s  
and fresh random challengesr . Also, our whole 
computation is totally depends on the number of 
members in the current group. Thus, the newly joined 
members can recover the current group key but 
cannot recover the previous group keys and those old 
members who left the group cannot recover the 
current group key. Thus, our protocol achieves both 
forward and backward secrecy of group 
communication.  
 

VI CONCLUSION 

We defined a new type of, circulant matrices based 
key transfer protocol for multi-group 
communications. Because of using circulant matrices 
as a tool, our proposed multi-group key transfer 
protocol takes much less time than other existing 
multi-group key transfer protocols. Also all the 
required security attributes are addressed in detail and 
the confidentiality of our proposed protocol is 
unconditionally secure. 
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