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ABSTRACT

Urban population growth together with other pressures, such as climate change, create enormous challenges
to provision of urban infrastructure services, including gas, electricity, transport, water, etc. Smart grid
technology is viewed as the way forward to ensure that infrastructure networks arve flexible, accessible,
reliable and ecomomical. “Intelligent water networks” take advantage of the latest information and
communication technologies to gather and act on information to minimize waste and deliver more
sustainable water services. The effective management of water distribution, urban drainage and sewerage
infrastructure is likely to require increasingly sophisticated computational technigues fo keep pace with the
level of data that is collected from measurement instruments in the field This paper describes two examples
of intelligent svstems developed to utilize this increasingly available real-time sensed information in the
urban water environment. The first deals with the failure-management decision-support system for water
distribution networks, NEPTUNE, that takes advantage of intelligent computational methods and tools
applied to near real-time logger data providing pressures, flows and tank levels at selected points
throughout the system. The second, called RAPIDS, deals with urban drainage systems and the utilization of
rainfall data to predict Flooding of urban areas in near real-time. The two systems have the potential to
provide early warning and scenario testing for decision makers within reasonable time, this being a kev
requirement of such systems. Computational methods that require hours or days to run will not be able to
keep pace with fast-changing situations such as pipe bursts or manhole flooding

And thus the systems developed are able to react in close to real time.
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grid” are terms that have their origin in the electricity
industry. They refer to an electrical grid that uses
information and communications technology (ICT)
to automate processes that improve the efficiency.

reliability, economics and sustainability of the

I INTRODUCTION

Today, half of the world’s population lives in

cities and, by 2030, this will grow to nearly
60%.1 The trends in urban population growth
together with other pressures, such as climate
change, create enormous challenges to provision
of urban infrastructure services, including gas,
electricity. transport, water, etc. Urban water
services are delivered by complex and
interconnected water infrastructure and its
management involves consideration of
sustainable use of water resources. pollution
control, stormwater and wastewater network
management and flood control and prevention.
Expanding, renewing and strengthening the
physical infrastructure could help relieve the
pressures of urban population growth and global
climate change, although at extremely high
costs. Therefore, there is a critical and urgent
need to investigate and implement efforts toward
improved wuse of the existing urban water
infrastructure by  employing  ‘intelligent’
management techniques. This, in turn, will help
delay the large investments required for a
foreseeable future.“Intelligent grid” and/or “smart

production and distribution of electricity. This
concept of smart-grid technology is being adopted in
many countries around the world as the way forward
to ensure that electricity networks are flexible,
accessible, reliable and economical.2 The intelligent
grid concept will also benefit from the rapid increase
in the amount of data (i.e., “big data”) becoming
available through proliferation of sensors, mobile
communications, social media, etc. However,
without intelligent computational methods, grid
managers and decision makers will find it
increasingly difficult to make sense of the large
amount of data being made available in near real-
time.

In a similar vein to the smart electricity grid,
“intelligent water networks” or “intelligent water
infrastructure™, which take advantage of the latest
ICT to gather and act on information in an automated
fashion, could allow the minimization of waste and
delivery of more sustainable water services. This
paper introduces two examples of intelligent systems
developed to utilise increasingly available real-time
sensor information in the urban water environment.
The first deals with the failure management decision-
support system for water distribution networks that
takes advantage of intelligent computational methods
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and tools applied to near real-time logger data
providing pressure, flows and tank levels at selected
points throughout the system. The second deals with
urban drainage systems and utilisation of rainfall
data to predict flooding of urban areas in near real-
time.

I REAL-TIME FAILURE
MANAGEMENT IN WATER
DISTRIBUTION SYSTEMS.

Water utilities around the world are obliged by law
to supply water in sufficient quality and quantity to
the consumers. However, due to their ageing assets
utilities are under increasing pressure to improve the
management of their infrastructure and optimize
operational and  capital expenditure.  The
performance of water utilities in the INDIA is
monitored by the Economic Regulator, , which seeks
to ensure that performance is achieved in an efficient
way, thus protecting the interest of the consumers.
Since economic regulation of the INDIA water
sector began in the late 1980s, It has facilitated over
£98bn of private investment and delivered safe
drinking water, a much improved environment and
improved customer service.3 Water utilities have
made progress in reducing leaks, and leakage is now
around 35% lower than its 1994-95 high, but still
amounts to 3.4bn litres of water every day, almost a
quarter of the entire supply.

Leaks and interruptions to water supply often occur
due to partial or complete failure of various water
distribution system (WDS) elements (e.g., pipes and
pumps) or due to accidental damage caused by third-
parties (e.g., by digging roads). The scale of the
impact of such failures can vary significantly
beginning with inconvenience caused to the
consumers that are cut off from the water supply or
receiving water under sub-standard pressure leading

up to water quality problems caused by
discolouration or  contaminant  intrusion.4,5\
Monitoring and repairing failed infrastructure

elements involves considerable costs. Therefore,
early detection, location and repair of such failures
in WDS are of primary interest to water utilities
aiming to protect the continuity of water supply and
mitigate the impact on the customers.

The wide availability of pressure and flow data has
triggered research in early warning systems.6,7
However, even with the latest developments in
sensing technologies and promising results of
various anomaly detection = methodologies,
diagnosing and locating problems in a District
Metered Area (DMA) due to a pipe burst still
remains a challenging task due to inherent
uncertainties (e.g., stochastic nature of water
consumption and lack of field data).
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The DSS was designed in a modular fashion to
maximise its extensibility. Figure 1 provides a
highlevel overview of an architecture for a real-time
DSS for operational management of WDS under
abnormal conditions. Off-line modules utilised by the
DSS for one-off data import or model calibration are
not included in the figure. A loose form of coupling
between individual modules (i.e., mostly via a
common database) was chosen to facilitate their
integration within the DSS. All inter-process
communication is achieved indirectly by polling
information stored in a Database Management System
(DBMS) or alternatively through Hypertext Transfer
Protocol (HTTP) requests (e.g., the interaction
between the “System Overview” and the “Alarm
Diagnosties™ UI modules of the DSS front-end).
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Fig 1 : An overview of a risk-based DSS for
WDS management.

(a) Alarm Monitor

The Alarm Monitor periodically checks the
contents of the “source alarm” table in the
Database (DB) for new (fresh) alarms.

(b) Likelihood evaluator

The Likelihood evaluator is a process responsible
for determining the likelihood of occurrence of a
burst in every pipe within a DMA where an alarm
generated. The evaluator combines the
outputs from several of information
(models) to assess the likelihood of a particular
pipe burst being associated with the active alarm.

was
sources
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The Dempster-Shafer theory of evidenceld has
been applied to combine the evidence from those
sources of information, as shown in Figure 2.

(c¢) Impact Evaluator

Similarly to the Likelihood Evaluator described
above, the process also monitors the alarms table
for newly generated alarms. The Impact Evaluator
can be launched on a number of computers
simultaneously to distribute the load (i.e., each
node evaluates the impact of only a part of
potential pipe bursts).

(d) Alarm Ranking

The Alarm Ranking process concludes the risk-
based methodology by performing impact
aggregation and alarm prioritisation. Similarly to
the Likelihood and Impact Evaluators, the process
also monitors the alarms table in the Postgre SQL
DBMS (as shown in Figure 1).

(e) Likelihood evaluation

The use of the hydraulic model (EPANET) as a
source of evidence to support the location of a
pipe burst within WDS relies on a number of
appropriately located pressure and/or flow
monitoring points. Additionally, it takes into
account the timing and magnitude of the burst that
needs to be large enough to cause headloss that
creates measureable drops in pressure at the
location of pressure loggers in the vicinity of the
burst pipe.

Output Data Burst Occurrence
Layer Likelihood
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Model
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Pipe Burst Customer
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Fig 2 : An information fusion concept to estimate
the most likely location of a failure.

IV DSS APPLIED - CASE STUDY ON
UK WATER SYSTEM.

The above DSS has been applied on a case study in
a highly looped urban DMA located in the city of
Harrogate in North Yorkshire, UK (highlighted in
grey in Figure 3). The studied DMA contained over
19 km of mains, supplying almost 1,600 properties

ISSN: 2278-4187

(over 95% residential customers). The average
minimum and maximum pressures were 30 m (8:00
AM) and 53 m (4:00 AM) respectively. The
minimum night flow was 6-1s and the overall
daily water consumption was almost 106 litres per
day (1 MUd). The DMA contained 450 pipe
segments that were considered in the risk analysis
(i.e., likelihood and impact evaluation).

* KNARESBOROUGH
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D Case sludy DMA

Fig 3 : An overview of the case study area.

(a) Risk Based Decision Making

Given the risk distribution shown above, the decision
maker would probably decide to put higher
importance to the likelihood component of the risk
since a relatively small number of pipes formed a
cluster (see the points within the circle in Figure 4)
with high likelihood of being the cause of the
problem. In this case the decision maker would also
know that the likely pipes under investigation fell into
the category of the critical ones as they have relatively
high impact (e.g., compared to the majority of other
pipes that have the normalized impact lower than 0.6).
Therefore, even in the case that the diagnostics
component providing the likelihood failed to identify
the correct location, the region where the
consequences of a burst would be significant is
mvestigated. It should be noted that the closeness of
the points in Figure 4 does not indicate geographical
proximity of candidate pipes. Therefore, suitable
visualization techniques that allow easy exploration of
the risk maps and the scatter plots need to be
mvestigated in the future.
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A Scatter plot of normalised Likelihood vs, Impact
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Fig 4: A scatter plot capturing the non-aggregated

risks of a pipe burst at various locations in a DMA.

V COMPUTATIONAL
PERFORMANCE

The primary focus of the methodology presented in
this paper is to support near real-time decision
making. Evaluating the impact of all potential pipe
bursts within a DMA on the rest of the system requires
a large number of muns of a hydraulic solver.
Therefore, it is computationally demanding as those
runs cannot be performed off-line. This is a
consequence of the need to consider the current of the
system based on the information from: (i) pressure and
flow monitoring devices, and (ii) demand forecast (as
it is necessary to project the effects of the pipe bursts
into the future, i.e., the next 24 hours). Even with the
high-performance  personal computers  impact
evaluation of a single failure is time consuming, which
prevents its application in the near real-time domain.
To increase the speed of impact evaluation a database-
centric distributed architecture has been implemented
(see Figure 5).

The system builds upon the strong transaction
processing capabilities of modern DBMS, such as
PostgreSQL. The RDBMS serves as a mediator
between a client application and a computer cluster
comprising of several nodes. The distributed impact
evaluation is done in the following steps: (1) the client
application inserts a set of impact scenarios into the
database (2) each of the processes running on the
computing nodes in the cluster periodically attempts
to retrieve new scenario(s) from the database (3) if a
new failure scenario(s) are retrieved from the
database, their impact is evaluated and (4) the results
are stored back into the database (5) the client
application retrieves the results of evaluated scenarios.
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Fig 5 : A database-centric distributed architecture
for pipe burst impact evaluation

Clent PC

The above presented architecture has shown as
suitable for given application since the time required
to retrieve failure scenarios and to store the results
was negligible compared with the time needed to
evaluate the impact. Implementation of such
distributed application was conceptually simple and
the solution was scalable. The results for the case
study presented in this paper have been obtained using
the distributed impact evaluator which was
concurrently running on 14 computing nodes. The full
impact evaluation of the above DMA took
approximately 5 minutes, which is acceptable given
the fact that new data from the network is currently
received every 30 minutes. However, this performance
could still cause needless delay in the investigation.

(a) Hydraulic Model

Hydraulic modelling has commonly been used to
assess the response of urban drainage systems to
rainfall events. However, for large networks and/ or
when repetitive simulation runs are needed (i.e., for
flood risk assessment), these can be slow and
computationally expensive. We present a faster
surrogate method based on Artificial Neural Networks
(ANN) that permits modelling of very large networks
in real-time, without unacceptable degradation of
accuracy.

(b) Early Warning System for Urban Flood
Management

The ANN model is based on a 2-layer, feed forward
Multi-Layer Perceptron (MLP).32,33 This is now an
established machine learning technique applied to
many fields. In the case of supervised learning, it
relies on the discovery of a multi-dimensional non-
linear relationship between the desired model target
outputs and a set of predictor factors applied as input
signals to the model. In applications such as urban
flooding, the inputs and targets take the form of time
series signals, sampled at a regular time interval (‘time
step’). The modelled relationship is discovered during
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a ‘training’ phase based on a number of events from
the previous history of the system. Having learnt this
generalised relationship, the trained model is then
ready for use on new events including those occurring
in real-time. Although training can require significant
computational time, the resulting trained ANN model
is able to provide flooding responses to rainfall in a
fraction of the time require by traditional
mathematical models.

. Y
Input [ayeg‘ Hidden Layer ‘ " Qutput Layer
v P Ldo
Fig 6 : Architecture of Multilayer Perceptron

(ANN).

From this study it is concluded that ANN technology
has the capability to satisfactorily predict manhole
flooding or CSO spills. However, this study has only
used input signals which are isolated from the
hydraulic performance of the sewer system and in
particular any downstream influences causing backing
up or re verse flow. Some of the measurement points
were at locations where the InfoWorks modelling had
indicated that reverse flows could occur but there was
no input signal for this phenomenon. Tt is possible that
ANN models may struggle to be reliable for all
rainfall events, and careful attention to training should
take account of these situations.

VI CONCLUSION

Water utilities around the world already monitor
and evaluate large amounts of data regarding the
operations and performance of their physical
infrastructure. Supervisory Control and Data
Acquisitions (SCADA) systems continuously
collect and provide data and information to the
control room personnel. Furthermore, the water
industry has invested heavily in a variety of asset
management tools that store large amounts of data
to assist with the maintenance, repair and
replacement of system components and equipment.
On the customer side, the industry is also making
progress with Automated Meter Reading (AMR)
and considering smart metering to reduce water
losses at customer premises and implement
customer-facing behavioural change
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programmes.41 The effective management of water
distribution, urban drainage and sewerage networks
is likely to require increasingly sophisticated
computational techniques to keep pace with the
level of data that is generated from measurement
instruments in the field. The sheer volume and
speed of acquisition of this data means that decision
makers will find it increasingly difficult to make
sense of events as they are occurring within the
network. The solution proposed here is the use of
intelligent computational methods to help the
decision maker and to present knowledge based on
past experience with the network to propose
solutions from which the decision maker can
choose. The two systems described above have the
potential to provide early warning and scenario
testing for decision makers within reasonable time,
this being a key requirement of such systems.
Computational methods that require hours or days
to run will not be able to keep pace with fast-
changing situations such as pipe bursts or manhole
flooding and thus the systems described above are
able to react in close to real time. As measurement
devices proliferate in water distribution and
hydrology systems, so the water industry will
undergo a ‘data explosion’ similar to that seen in
the biosciences. The challenge for the
computational methods, therefore, is to make sense
of increasingly large volumes of data, in real time,
to aid decision makers and significantly improve the
operation of these important systems.
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