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ABSTRACT 
The purpose of this paper is to drive a solution of certain integral equation whose kernel involves Generalized 
Hermite Polynomial. We believe that our result is unify in nature and many results can be obtained by considering 
suitable parameters involved in Generalized Hermite Polynomial. For the purpose of illustration we mentioned a 
special case briefly by choosing suitable parameters involved in Generalized Hermite Polynomial. 
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I INTRODUCTION 

Many boundary value problems reduced to the 
problem of solving integral equations whose kernel 
involves many well known classical polynomials like 
those of Hermite, Laguerre, Bessal, Legendre, Jacobi 
etc. During the recent past attempts have been made 
to generalize and unify these classical polynomials 
with the help of Rodrigue’s formulae. To mention 
Goued Hopper [8] gave a generalization of Hermite 
polynomials by formulae. 
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 and , ,  and r a p are parameters, for 

suitable value of , ,  and r a p (1.1) reduced to 
modified Hermite, modified Laguerre and modified 
Bessel polynomials. In view of these generalizations 
it is worth considering integral equations involving 

 2 , 0,1H xn  as kernel and such we prove the 
following theorem. 
 

II THEOREM 

If f is an unknown function satisfying the integral 
equation. 
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and g is a prescribed function then f is given by 
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III SOLUTION 

To Prove the Theorem we make use of Mellin 
Transform and discuss case 0 , 0r p  .  
( 2, 1   )r p in our case   
By the convolution theorem for Mellin Transform 
(2.1) reduces to 
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Transform of      , ,k x f x g x and by Sneddon 
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When 0 and 0,r p  Applying Mellin Transform 
of equation (3.1) and use the result of Erdelyi
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We write equation (3.1) in the form 
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Then from (3.3) and (3.5) 
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By use of definition of H function. We get the inverse 
transform ( )L x of *( )L s as 
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Where 
,
,

p qHm n are Fox’s H functions defined by [5]. 
And now taking Mellin Transform on both sides of 
(3.4), using convolution theorem and result of Mellin 
Transform. We get 
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Hence using (3.7) 
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Thus we have prove the following theorem – If f  is 
unknown function satisfying (2.1), where g  is some 
known function then f is given by (3.8) according 
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