

RABINDRANATH TAGORE UNIVERSITY
UGC Approved Journals

Anusandhan (AUJ-AN)

- Technology & Management

Indexing and Impact Factor :

INDEX COPERNICUS : 48609 (2018)

Read / Download More Articles

 Science Technology & Management Journal By AISECT University, March 2013 ISSN: 2778-4187

DESIGNING A CHAT ROOM
APPLICATION: USING PEER-TO-PEER
AND CLIENT-SERVER APPROACH OF

DISTRIBUTED SYSTEMS

Dr. S.K Gandhi1, Pawan Kumar Thakur2
 Department of Computer Science & Engineering1, 2

AISECT University, Bhopal (M.P)

ABSTRACT
A distributed system is an application that executes a collection of protocols to coordinate the actions of multiple

processes on a network, such that all components cooperate together to perform a set of related tasks. Early distributed

systems emerged in the late 1970s and early 1980s because of the usage of local area networking technologies. Internet-

scale distributed systems emerged in the 1990s because of the growth of the Internet. A distributed system can be

physically instructed by two ways: First, fully connected network peer- to –peer approach in which each of the nodes is

connected to each other. Second, partially connected network in which a direct links exist between some but not all pairs

of computers. A few of the partially connected network models are star (client server) structured networks, multi-access

bus networks ring structured networks, and tree-structured networks. The purpose of this paper is to design a chat room

application which is based on the architecture of distributed system. This paper used a peer-to-peer approach and a

client-server one to design the chat room application.

KEYWORDS: Distributed system, Architecture, Peer-to-peer, Client-server, Manager, Login, Online Chat, Port

I. INTRODUCTION

A chat application can be design using different

approaches of distributed system architecture.

We will explain in more details two of them: a

peer-to-peer approach and a client-server one.

Even though different models are possible there

remains some functionality in common as shown

in Fig.1.1.

Fig.1. Architectural styles

In the above Fig. 1.1, Part A remains the same in

all architectural styles which consist of GUI, text

and display manager and status manager. Part B

must be different in case of a peer-to-peer or

client-server architecture [1]. In this paper

section 3 represents the design scheme of

architecture, section 4 develop a chat application

use of a peer-to-peer architecture and how it

work, section 5 develop a chat application use of

a client-server architecture, section 6 compare

 Science Technology & Management Journal By AISECT University, March 2013 ISSN: 2778-4187

the scalability and performance of both the

architecture.

II. OBJECTIVES

This paper designs a chat room by using the

architecture of distributed system which fulfills

the following objectives:

(a) Design a Networks scheme for peer-to-peer

and client server architecture.

(b) Use the peer-to- peer architecture of

distributed system to design a chat room with

following concepts:

• How does it work?

• Login and who is on-line?
• Ask for friend relation
• Chatting

(c) Use the client server architecture of
distributed system to design a chat room with
following concepts: How does it work?

• Login and who is on-line?
• Ask for friend relation
• Chatting

(d) Compare the both the architecture and find
out which one architecture is best.

III. DESIGN SCHEME
To design a chat room based on the peer- to–

peer and client server architecture of distributed

system we will use the following managers as

shown in Fig.2[1]:

(a) Network manager. A network manager is

responsible for listening to the network.

(b) Packets manager. The packet manager is

responsible for classifying packets between

system and normal chat messages.

Fig. 2 Networks Managers

(c). Text and display manager. The text and

display manager is responsible for normal chat

messages received from the packet manager.

(d). Status manager. This is responsible for

status, login and friend messages.

The most important thing is to run all these

modules in separate threads because it is really

important to deal with and display messages

when the network manager is sending another

one, etc. Fig. 3(a,b) showed the global shape of

the two architectures: client server architecture

and peer-to-peer architecture[2].

Fig.3(a) Client Server Architecture

Fig. 3.(b) Peer-to-Peer Architecture

 Science Technology & Management Journal By AISECT University, March 2013 ISSN: 2778-4187

We would try to explain more how these two

architectures can be developed and how we can

deal with some aspects of the process such as

login, discovery, friend relationships etc in the

next section of this paper.

IV. FIRST APPROACH: PEER-TO-
PEER ARCHITECTURE

The first possibility to develop a chat application

is the use of a peer-to-peer architecture of

distributed system[3]. A fully connected

network peer to peer architecture is a network in

which each of the nodes is connected to each

other as shown in Fig. 1.3.

Fig. 4 Peer-to-peer architecture of distributed system

(Wikipedia.org)

(a) How does it work?
We are working with a pure peer-to-peer

network which is composed by peers and links

between them only. We do not want to use the

functionalities of super-peers to keep this system

as basic and simple as possible. Every node

must maintain two separated lists[4].

(i). One list containing names of friends

(List<Friend1, Friend2, Friend3, ...,>).

(ii). Another list containing all online peers that

we know (List<[User1, IP, Port], [User2, IP,

Port], [User3, IP, Port], ...>).

The friends-list is modified when we add or

remove a friend. This process will be explained

in more details in our next section. The online-

list is managed by the status manager[3]. In a

first time, we add peers into this list during the

login phase. But, after that, we can use an

eventually perfect failure detector (EPFD) to

remove peers when they leave or they crash[5].

(b) Login and who is on-line?
We take an example with five peers (nodes)
already connected on the network we are the
sixth one arriving on the network as shown in
Fig.1.5 and let's make some assumptions:

Fig. 5 Example sixth one (node) arriving on the network

We assume that the discovery process is made

easier thanks to a public place where connected

peers can publish their point-of-entrance in the

network. Whatever happens we need to know at

least one entry point.We assume that there

exists a (well managed) DHT (Distributed Hash

Table) containing all credentials of registered

people of this chat service.

Peer 6 chooses Peer 5 as entry point. Peer 6 will

send a join message to Peer 5 : JOIN(Peer6,

Password, IP, Port) Figure 6 shows the

behaviour of every node when a JOIN message

arrives[6].

 Science Technology & Management Journal By AISECT University, March 2013 ISSN: 2778-4187

Fig6 Behavior model

In addition to that, we can imagine a way to

avoid Join messages to loop forever in the

network with a simple 'id' feature or something.

Thanks to this login process, we can retrieve the

list of already connected people and launch our

EPFD on every host to detect when they leave or

they crash. We are now ready to begin chat

sessions with connected friends.

(c) Ask for friend relation
When the application that is running and the

user fully logged-in, we can simply search in the

online list to friend new friends. Then, we can

directly send an Ask-Friend message to the IP

address and the port of the new friend[5]. This

kind of message is treated by the packets

manager. If the new friend agrees with this new

relationship, he replies with a Friend- Ok

message to the original peer. If the new friend

not wants to begin a relationship with the peer,

he simply never replies to the message. This

process is very simple thanks to the fact that we

are in a peer-to-peer network, where every node

can act as a server, client or both[7]. The

communication between peers can be done

directly thanks to the information contained in

the online-list.

(d) Chatting
In the same way than the friend messages, peers

can simply exchange normal chat messages with

each other thanks to the fact that they have all

the information to join other peers. We can

easily understand here the importance of the

packets manager. Actually, when a packet

arrives in a node, the packet manager can simply

read the header of this packet to know if it is a

system notification (friends, status, etc.) or a real

chat message (containing text to display).

V. SECOND APPROACH: CLIENT-

SERVER ARCHITECTURE

The second possibility to develop a chat

application is the use of client-server

architecture of distributed system as shown in

Fig. 1.7.

Fig. 7. A centralized server-based system of nodes
(Wikipedia.org).1.5.1 How does it work?

 Science Technology & Management Journal By AISECT University, March 2013 ISSN: 2778-4187

We think that second architecture is simpler to

achieve because this solution is more centralized

and then, easier to understand. Fig1.8 shows the

main modules of a client and the server. We

assume that the server is unique on the network.

An important thing to notice is that the server

might use a reliable multicast to contact every

node connected to him. This kind of behaviour

will happen every time a (new) node is

connecting or disconnecting[8].

Fig. 8 Modules of a client and the server

1.5.2 Login and Who is on-line

The login phase is simple it consists in simple

messages send to the (only one) server on the

network. Everything is centralized so the server

has just to check in a local database if the

permissions of the user are correct[4]. If they

are:

Firstly, the server replies with a Join Ok
message to the client. The message contains the
list of connected friends.
Secondly, the server sends a notification to

every node which has the new node in its friend

list. Here, we can understand the usage of the

multicast module. A global scenario:

Fig. 9 Login Phase 1.5.3 Ask for friend relation

The process of ask for a friend relation is

simpler than in the peer-to-peer architecture as

shown in Fig.10.

Fig.10 Ask for a friend relationship

In above Fig.1.10 note that the server replies

with a Result message to indicate to the client if

the searched user exists or not. The reply to the

invitation of relationship is an Answer message.

Chatting The process is really simple again.

When there is a friend who is online, you can

begin a chat session with him. You always send

your message to the server with its destination

and the content[9]. Then, the server just

forwards the content to the destination. As in the

peer-to-peer architecture, the packets manager

has a very important role to classify system

notifications and real chat messages.

VI. COMPARISON AND DISCUSSION

 Science Technology & Management Journal By AISECT University, March 2013 ISSN: 2778-4187

Our first peer-to-peer approach is really good for

scalability because at no point of the

architecture, the number of node is important.

We do not have to change anything if we use

this chat application with 5 people or 50 people.

The only thing in relation with the number of

node is the list of online people[10]. We can

imagine a better data structure to store this

information (local hash-map, etc.) But with the

high volume of space we have in nowadays

computers. Even if a list of 1000000-entries is

not a problem to store. Once again, if we need to

search in this list very often, we can imagine a

better data structure than a list.

Our second client-server approach an

application like that is not really effective. The

major problem is the fact that everything is

centralized and we cannot imagine a number of

nodes growing up without a failure of the central

server. In this case, the entire chat application is

down. Also, we should add other servers to be

able to reply to all the queries in a respectable

delay.

VII. CONCLUSION

The peer-to-peer is not the best one for the login

performance. Actually, we have to wait until our

Join message reaches the farthest node to be

fully connected to the network. If we have a

global network with a high latency and a

shortest path from us to the farthest node of

about 50 hops, we must wait 50 times the mean

latency of the network to be sure that everybody

on the network is aware of our presence. The

client-server architecture provide much better

performance for the login phase thanks to the

small number of hops needed to join all peers.

This is the advantage of a centralized server. But

to conclude we think that the drawbacks of

client server are bigger than the advantages.

REFERENCES

[1] Kundan Singh and Henning Schulzrinne, “Peer-
to-peer internet telephony using sip”,
Department of Computer Science, Columbia
University.

[2]. Yang, B. H. & Garcia-Moline, “Designing a
Super-Peer Network”, Standford University,
February 2002.

[3] Sinha P.K, “Distributed Operating Systems
Concepts and Design”, Prentice-Hall of India
private Limited, 2008.

[4]. W. Siong Ng, B. Chini, K. Lee Tan. “Best Peer:
A Self-Configurable Peer-to-Peer System.” In
Proc. of the 18th Int. Conf. on Data Engineering,
California, 2002.

[5]. Kwok, S., Lui, S., A License Management
Model for Peer-to-Peer Music Sharing.
International Journal of Information Technology
& Decision Making, September, vol. 1, #3, pp.
541-558,2002.

[6]. Lang, K. and Vragov, R. “Using Experimental
Methods to Evaluate the Effectiveness of
Different Pricing Mechanisms for Content
Distribution Over Peer-to-Peer Networks.”
Americas Conference on Information Systems.
2005.

[7]. Lechner, U. and Hummel, J. “Business Models
and System Architectures of Virtual
Communities: From a Sociological Phenomenon
to Peer-to-Peer Architectures”, International
Journal of Electronic Commerce, 6, 3,2002.
pp.41-53.

[8] E. Bonsma, C. Hoile. “A distributed
implementation of the SWAN peer-to-peer look-
up system using mobile agents”. In Proc. of the
AAMAS’02 Workshop on Agents and Peer-to-
Peer Computing, Italy, 2002.

[9] Bibliography containing references on
Distributed Computing can be found at:
ftp:ftp.cs.
umanitoba.ca/pub/bibliographies/Distributed/Oss
er.html

 Science Technology & Management Journal By AISECT University, March 2013 ISSN: 2778-4187

[10]. Bibliographies containing references on
Distributed Systems can be found at:
www.wikipeida.org.

